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This paper presents a similarity solution for plane channel flow of a very viscous fluid, 
whose viscosity is exponentially dependent upon temperature, when heat generation 
is very large. A dimensionless formulation of the problem involves two length scales 
(the depth h and length I ,  respectively, of the channel), one velocity scale (the mean 
velocity V of the fluid along the channel), the thermal conductivity k ,  thermal 
diffusivity K and viscosity ,u of the fluid, and the temperature coefficient b of the 
viscosity. From these, two important dimensionless groups arise, the Graetz number 
(Gz = V h 2 / d )  and the Nahme-Griffith number (G = p V 2 b / k ) .  In  the case of steady 
flow with G-l 4 Gz-l 4 1 a thin thermal boundary layer of thickness proportional to 
Gz-4 arises a t  each wall with an even thinner shear layer, detached from the wall and 
embedded in the thermal boundary layer, of thickness proportional to Gz-*(ln G)-1, 
coinciding with the region of maximum temperature (In G)/b. The similarity variable is 
(Peiylx)) where Pe is the PBclet number ( vh /K)  and y and x are measured away from 
and along (either) boundary wall. The analogous unsteady uniform flow solution is 
also given. 

1. Introduction 
The prediction of velocity and temperature profiles for channel flows of high viscosity 

materials has been discussed by several authors. A recent review article has been 
published by Winter (1977) giving an exhaustive bibliography; although the title 
suggests that polymers are being considered, the analysis given effectively refers to 
shear and temperature-dependent viscous fluids. 

The situation commonly met in confined polymer flows is such that the energy 
equation is dominated by three terms: 

( 1 )  heat generation due to viscous dissipation, 
(2) heat conduction across streamlines, and 
(3)  slow changes in heat convection along streamlines. 

Temperature gradients are small along streamlines and large across them. This 
arises when the PBclet number (Pe = VL/K, where V is a characteristic velocity and 
L a characteristic length, K being the thermal diffusivity) is large, as is usually the case 
in polymer processing situations. The relative importance of effects (2) and (3) above 
obviously introduces a ratio of length scales l/h, where 1 is the distance along the channel 
and h is the distance across the channel. High heat generation arises when l/h 9 1, and 
again this is the situation of most significance in many processing operations. The 
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Graetz number (Gz = V h 2 / d )  becomes the relevant dimensionless group comparing 
convection with conduction. 

In  many situations, there is strong coupling between the energy and momentum 
equations through the temperature-dependence of viscosity. Thus it is convenient to 
define a characteristic rheological temperature difference (b-l)  based on the viscosity 
and to compare this with various other temperature differences that arise in the flow 
field. One such ratio is the Nahme-Griffith number G ,  defined below in equation ( l l ) ,  
which can be regarded as the ratio of the temperature rise due to heat generation and 
that needed to alter the viscosity by the factor e .  Another, B,  compares the imposed 
temperature difference with b-1. 

These ideas are discussed fully elsewhere (Pearson 1972, 1977) in the context of 
polymer processing. Analytical or numerical solutions for the cases where G or B are 
not very large have been well analysed (see Winter 1977). 

A recent paper (Ockendon & Ockendon 1977) gives a very successful account of the 
mathematical structure of the velocity and temperature fields in the case where B is 
very large but G is zero, and where the relevant temperature difference is imposed by 
a step change in wall temperature. 

We consider here the case where G is very large, and much larger than B. This covers 
a situation that is not irrelevant for processing situations, particularly injection 
moulding, for which both steady and unsteady solutions are relevant. The asymptotic 
solutions that we present are particularly useful in that they cover ranges of parametric 
variables for which numerical solutions converge slowly or not a t  all. 

Before developing the mathematical model, it is worth considering in very simple 
terms the pattern of temperature development for pressure flow in a uniform channel 
of very viscous incompressible fluid of low thermal conductivity, whose viscosity 
decreases rapidly with temperature. It is simplest to consider the unsteady initial- 
value problem for an infinitely long channel where the walls are held at constant 
temperature and the flow rate is constant. Initially the temperature is uniform through- 
out, and the viscosity is high everywhere. For very short times the flow is adiabatic, 
i.e. there is no heat conduction and the temperature rises directly in proportion to the 
rate of dissipation of mechanical energy. For a Newtonian fluid, for example, this gives 
a parabolic temperature profile with the temperature rise greatest at  the walls. If the 
thermal conductivity is low enough, this continues until the temperature rise is so large 
that the viscosity decreases significantly and most near the walls. Elementary stress 
analysis shows that the shear rate will rise preferentially near the walls and, because 
of the constant flow rate criterion, will fall near the centre of the channel. This in turn 
means that the rate of heat generation near the walls increases proportionately to that 
near the centre, though it decreases overall in absolute terms. Thus in the absence of 
any heat conduction, including no heat transfer at  the walls, a plug flow will ultimately 
develop with increasing temperature gradients concentrated near the walls. At some 
stage the heat conductivity of the fluid will act to smooth out these sharpening tem- 
perature profiles in a very thin thermal boundary layer, within which an even narrower 
shear layer occurs, the latter concentrated close to the position of maximum tempera- 
ture. In  general terms we know that conduction will in the end balance generation; we 
can also readily see that, if any final steady-state situation arises, it will be such that 
the temperature will be highest a t  the centre of the channel and so we shall have a hot 
core flow rather than a cold plug flow. What we investigate is the early stage of this 
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development from adiabatically induced plug flow to fully developed hot core flow, 
and suggest, plausibly even if we cannot prove rigorously, that it  can be described by 
a relatively simple similarity solution. The same arguments are then applied to the 
steady-state entry flow problem to derive analogous similarity solutions. 

It is difficult to compare the resulting solutions with other work because they refer to 
precisely those extreme values that have not been considered by other authors. 

2. Mathematical formulation 
2.1. Rheology 

We consider here purely viscous fluids,t and need only use a scalar simple shear 
viscosity p that is shear-rate ( y )  and temperature ( T )  dependent, and which can be 
determined experimentally. Thus, formally, 

P = ,uV, TI. (1)  

It is found convenient to represent this in the form 

,u = exp @(To - T ) ]  

for limited ranges of T and v. The representation fails for very low values of p2, but this 
is not a region of importance for cases where heat generation, and hence p2, is large. The 
exponential dependence upon T is wholly empirical, but nevertheless indicates a 
variation which correctly models the actual behaviour of polymer melts, for example. 
The alternative representation based on a single Arrhenius activation energy, leading 
to an exp (B/T)  dependence, though equally good in matching experimental data, is 
much more difficult to handle analytically and can be preferred theoretically only if 
one single physical process dominates viscous flow. 

The value taken by a depends upon the material (polymer melt or compound) in 
question. A value of about 0.3 is characteristic of many polymers at  high shear rates, 
though there are many fluids for which cc 2: 0 is relevant. In what follows the main 
calculations will be carried out for a = 0, largely because of analytical simplicity, 
though the consequences of taking a arbitrarily within the permissible range 0 < a 6 + 
will be given. 

2.2. Flow boundaries 

For simplicity, we consider here two-dimensional flow in a channel of constmt depth h, 
and length I ,  where h 4 1. Figure 1 shows the co-ordinate system, with z measured 
downstream, the walls being the surfaces y = +h. The channel walls are assumed to 
be held a t  a fixed temperature. For low conductivity polymeric fluids and metal walls, 

t In an earlier paper (Pearson 1967) it was argued that this approximation was relevant for 
isothermal flows of simple fluids (in the No11 sense) in channels of slowly varying depth. The 
same argument can be applied here provided temperature changes along streamlines are slow 
compared with the natural (viscoelastic) time scales of the fluid. Unfortunately, evidence on time 
scales is usually obtained under isothermal conditions; what we need is the relaxation time scale 
for sudden temperature changes under conditions of nearly constant simple shear, and this has 
been little investigated for polymeric systems. If isothermal simple shear relaxation times are 
taken as relevant, then a purely viscous response proves to be relevant in simple shear after a 
shear of about 5 ,  which makes the viscous approximation wholly relevant in this high Pe 
situation. 

7 FLM a3 
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FIQURE 1.  Co-ordinate system and channel dimensions. 

this last is a very reasonable approximation. (Certainly an adiabatic approximation, 
i.e. one with no heat transfer, would be far worse. The solution for the latter extreme is 
rather easier to get.) It will be shown in Q 5 that, where the solution for the temperature 
and velocity fields is of a boundary-layer character, the layer lying close to the walls, 
the results can be readily generalized to the case of (a )  pipe flow, (b )  radial flow in disk- 
like channels, and (c) slowly varying channel depth ((Vhl 4 1) or tube radius. 

2.3. Equations of motion and energy 

To avoid unnecessary complications, we shall assume that the material is incom- 
pressible, and that inertia forces are negligible. In  practice, Reynolds numbers are 
very small, while variations in density p due to temperature and pressure variations 
can be accommodated later. Body forces are unimportant. The velocity and tem- 
perature fields are given by 

with boundary conditions 

We can define a stream function $(x,  y, t) such that 

u = a*lay, 2, = - a ~ p x  (4) 

satisfying the continuity equation, while the momentum equation becomes, using a 
lubrication approximation, 

with p the pressure. The adequacy of (5) has been considered in Pearson (1967). It 
recognizes that 1.1 < IuI and that lalay1 p lalax\. It allows aptax, u andp to be slowly 
varying functions of x .  The variations with 2 will depend upon the coupling between 
(5) and the energy equation through p ,  which is strongly temperature dependent, and 
so variations in T with x will have to be sufficiently slow. To maintain simplicity, we 
assume that the internal energy of the fluid is given by a constant specific heat c. 
Although this is unrealistic for polymer melts, variations in c can in principle be 
accommodated in a generalization of the results obtained here, most conveniently 
perhaps by concentrating them a t  a phase change, in terms of a latent heat of melting. 
We also suppose that heat conduction can be represented by a constant thermal 
conductivity k, largely for want of detailed experimental information. We thus obtain 
as an energy equation 
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where 
a a  a a 
d , = z + u - + v -  

ax ay 

and where only the dominant term has been retained in the viscous dissipation and 
heat conduction contributions. This is a quite standard approximation in the case of 
high PBclet number flows of viscous fluids (Nir & Acrivos 1976) and can be amply 
justified in all cases of practical interest. 

2.4. Dimensionless variables, parameters and equations 

It is convenient to define dimensionless variables in terms of a characteristic velocity 
V (related to the flow rate Q = Vh) ,  the channel depth h, a characteristic viscosity pO, 

and the physical parameters k ,  c,  p and b already introduced. 
where ,u = ,uQe-bT, (7) 

We write f = x/h,  7 = y /h ,  T = kt/pch2, (8) 

4 = $/Vh,  8 = kT/,uo Vz ,  rIt = h2(ap/ax)/,uo V .  (9) 

Pe = pcVh/k (10) 

GZ = pcVh2/kl. ( 1 0 4  

G = V%/k (11) 

is the P6clet number, and very large. We also define a Graetz number 

is the Griffith number, and large. 
Equation ( 5 )  becomes 

with first integral, using the symmetric boundary conditions 

4(7 = +4)  = +t ,  (13) 

$,, = I157eao. (14) 

4,(7 = f = 0. (15) 

(16) 

B = w e  (17) 

The no-slip boundary condition yields 

Equation (6) becomes 

8, + w 4 ,  8c - 46 8,) = 8,, + e-Qe($,,)2. 

If we compress the co-ordinate by writing 

then P e  drops out of (16). It is this co-ordinate stretching that justifies the neglect of 
a2/ax2 terms compared with a2/ay2 terms in (6). The boundary conditions on 8 are simply 

(18) e(7 = f *) = 0. 

3. Unsteady uniform flow 
We consider first the case of stagnant fluid, initially all a t  temperature T = 0, 

suddenly set into uniform flow along the channel, considered for this problem to be 
effectively infinitely long. We shall take the flow rate Q to be constant. The whole 
solution becomes independent of x ,  or p, and the initial condition becomes 
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The only velocity component is that in the 6 direction, so (14) can be written 

where w = #,,, and (16) beco'mes 

Boundary conditions (13), (15) and (18) apply for all 7 > 0. 

f (G, 7) r ]  = e-uewll, 

6, = 6,,, + eQBf2q2. 

3.1. Small time expansion 

For sufficiently small 7, G0 < 1, even though G $ 1.  We write 

where 0, and wi are taken to be functions of r ] ,  and thef, are constants. Substitution 
into (20) and (21) using (13) and (15), (19) being automatically satisfied, yields for the 
first two terms 

6, = 144v2, 

W O  = Q( 1 - 4q2), 

02 = (12)2+(12)4G(474-+72), 
~1 = - Q(3 - 72q2 + 2 4 0 ~ ~ )  G, 

fo = 12, f, = - + ( 1 2 ) 3 ~ ,  
where, however, boundary condition (18) has not been satisfied. Calculation of further 
terms shows that the expansion cannot be expected to be valid for 7 other than of 
order G-l, and that 6, as calculated without satisfying (18), has its largest numerical 
value at r] = & 8. Inevitably thin thermal boundary layers will develop near the walls, 
for which the relevant similarity variable is 

In  the neighbourhood of r] = - 4, we now add to 0 given by (22a) an expansion 

where m,, for example, obeys the equation 

6* = 7m1(5) + . . . + 7"m,(5) + . . . , (24) 

mlgg+46m1~-ml = 0 
with ml(0) = -el( - 4) = - 36, m, -+ 0 as 5 3 co. The solution is 

(25) 

m, = - (12)2i2erfc (4g) (26) 

(Abramowitz & Stegun 1964, p. 299). 
Higher-order terms m, obey similar but inhomogeneous equations with comple- 

mentary functions of the form iZnerfc (6) .  
The full details of this pair of matched expansions have not been examined. The 

important aspect is that a spatially maximal temperature 0 of order G-l is reached in 
times 7 of order G-l at a distance from the wall that is of order G-4. Since GI3 is then of 
order one a t  this layer, a pronounced effect on the viscosity and thus on the velocity 
and heat generation profiles will be effected. A runaway effect can be expected to take 
place whereby all shear and heat generation will become concentrated near the 
position of maximum temperature once eae becomes large compared with one. As we 
shall see later, it  is useful to estimate the time at which a maximum temperature 
G-11nG is generated, for this will lead to a viscosity variation of order G 9 1.  This is 
done in the appendix. 
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3.2. Medium time expansion 

We now look for a similarity solution of (20)  and (21)  in which 

subject to boundary conditions 
8 = s(0, = a) (27)  

g(0) = g(c0) = 0; s(0) = 0, s(c0) = 1. (28  a-d) 

This will only be relevant provided G is sufficiently 1arge.t We want maxg 9 G-I so 
that max eQ 

so that 5 9 1 for 7 < 1 and yet sufficient time will have elapsed for a similarity solution 
to develop out of the small time solution given by (22a)  and (24) .  Only when we have 
obtained the similarity solution shall we be able to discuss in detail the appropriateness 
of boundary conditions (28) .  

Equation (21)  becomes 

1 ; we also want 
G - l < r < l  (29)  

r-l(+<g5 + gss) + $ e G g f 2  = 0 

f = - 2F(G) 7-4 

(30)  

(31)  

in the neighbourhood of 7 = - +. Clearly 

for some F.  From (20) ,  using (27) and (28d) ,  we obtain 

1 = /omssdy = F ( G ) ~ m e G ~ d f ;  0 

and by substitution into (30)  

We look for the non-trivial solution of (33)  subject to boundary conditions (28a, b ) .  
(The trivial solution g = F = 0 is in any case eliminated if the infinite limit of integra- 
tion is replaced by a very large number.) 

We now allow ourselves to be guided by the hope (or expectation) that g will have 
a sharp maximum a t  a distance of order one (measured in units of f;) from the wall. 
Balancing the various terms in (33)  leads us to write 

Gg = lnG-X(O), 0 = y-S 

with x(0)  = xo, X A O )  = 0, 

xo = o(lnG), 6 = O(1) .  x will obey the equation 

x;; + *(O + 6 )  xe = e-x / ( e-x d?) (37) 

with boundary conditions 
(38) 

The significance of the sharpness of the minimum of x becomes evident in that the 
right-hand side of (37)  will be large for very small values of ? and small for large values 
of 0. Indeed, we can see at  once by solving the linear homogeneous part of (37) that 

x(c0) = x( - 6) = In G. 

x - lnGerf(4y) (39) 

t Otherwise the solution w = - FCa for 5 + cc would be significant. 
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for [or 0 > 1.  Moreover, for 1nG B OlnQ % 1 

x N n-4 In G{e-i8*c3 + n* erf (48)). 

Similarly, for 61n G B cln G > 0, 

x - lnG(1 -Eerf(ig)} 

with E as yet unknown, and for small values of - 0 
x - n-t In C{n4 - E(nf erf 46- e-48'0)). 

We must now obtain a solution for (37) in the region 0 < O(l/lnG) to match to the 
asymptotic forms (40) and (42). We write 

L = X - X o  

B = hO 
and use the stretched variable 

(44) 

(45) 

to obtain 

with l ( 0 )  = lU(O) = 0. (46) 

iUu = e-l. (47) 

If we assume that h = O(ln G), the lowest-order contribution to 1 is the solution of 

This can readily be seen to be L = - 2 1n{2e'/"2/( 1 + edzu)}, which for large is given by 

1 N J2IBI. 
On matching (48) and (40) we get 

Equation (43) now yields, to the same order of approximation, 

whence 
Matching (48) to (42) gives 

xo - 3 In 2. 

E =  1. 

Finally, requiring the constant parts of (40) and (42) to be equal gives 

erfiS = 4, i.e. 6 = 0.955. (53) 

It is reasonably straightforward to verify that all terms neglected are of lower order in 
the region of overlap. What we have shown is that, for 1nG asymptotically large, 
a similarity solution exists with the following features: 

for 5 = (7 + Q) 7-4 near to 0.955, 0 has a maximum close to G-l(ln G - 3 In 2) which 

G-l In Gerfc (45) for 6 > 0.955 and 

G-llnGerf(i[) for 5 < 0.955. 

tends t o  
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w . g  W = l  g=ln  G-3 In 2 

FIGURE 2. Dimensionless temperature and velocity profiles for unsteady uniform flow. -, g ( c ) ,  
dimensionless temperature profile; - - -, w ( c ) ,  dimensionless velocity profile. 

It is worth observing that almost all of the volume flow &, to the order considered, 
takes place as a uniform flow (a plug flow) with velocity almost V across almost all of the 
width h of the channel. All of the shear takes place in a layer whose thickness is of order 
(In G ) - l d  at  a distance of order T* from the wall. Clearly we consider r* to be of order 
(In G)-l a t  most so that the asymptotic similarity solution dominates, but this can still 
be very large compared with the value O(G-4) a t  which we assumed such a layer would 
form (see appendix). Figure 2 shows diagrammatically profiles for velocity and 
temperature. 

The actual shape of the velocity profile is given by 

s(a) = ed2./( 1 + e420),  

We can now justify the use of the boundary conditions g(00)  = 0,  s(co) = 1 in (28) by 
noting that, even if these had been altered by terms of order G-' and (lnG)-l 
respectively, the solution obtained would still have been accurate to terms of order 
(In G)-l smaller than those retained. 

3.3. Longer time solutions 

It should be possible to extend the solution given in 3 3.2 above to take account of the 
constriction of the core flow as T* became significant compared with unity. Clearly the 
outer boundary conditions in (28) would have to be replaced by ones taking account of 
the interaction of the two thermal boundary layers and of the change in width, and 
hence velocity, of the core flow. This is carried out to a certain extent in Ockendon & 
Ockendon (1977). 

However, what is easier to investigate is the fully developed hot jet flow that is 
relevant for long times, obeying (20) and the steady energy equation 

e,,,, + eG0 f 272 = 0. (54) 

We anticipate that 0 will have a maximum a t  7 = 0 and so put 

# ( O )  = #, (O)  = 0. GO = @ - $(7) with 

If we write a = (Gf2e@)fr  = AT (55)  
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then $aa = aze-fi (56) 

with $( f &A) = @. 

Provided A and @ are large enough then - BA < a < *A, $a = f 2@A-’, because 
q5aa - 0, for almost all of the range (0, A )  in a. The total flux will be given by 

On inverting the order of integration using (54), and putting 
obtain simply 

@ = tGf. 

It then follows, provided 2CDA-l is O( I), which can be checked a posteriori, that 

CD = lnG+2In(lnG)+h.o.t. (59) 

The difference in maximum temperature 6 from that given in 5 3.2 is therefore 
2G-lln (In G). 

4. Steady developing flow 

boundary conditions (13), the energy equation 
We consider here steady flow in the channel which is governed by equation (12), 

Apfl- $Be, = e,, + e - Y $ , J 2  (60) 

that is obtained from (16) and (17), the boundary condition (18) and the initial 
condition 

e(p = 0) = 0. 

There will be an analogy with the small time expansions given in $3.1,  relevant for 
very small /3,t although the point (0 ,O) will be special in that the term T,, will in 
practice be important locally and so the original equation (6) would not be valid there. 
We shall not examine this region here. We note that the fully developed solution 
discussed in Q 3.3 will be relevant in the limit /3 + co. 

Convection is here represented by two terms, the second of which is neglected by 
Winter (1977) in his more general treatment. It is included in the similarity solution 
given in 5 4.1 below. 

4.1. Similarity solution 

We now consider a similarity solution that will be relevant for 1 9 /3 > 0 in terms of a 
similarity variable 

t The equivalent time is that given by t = Z/V in ( 8 ) .  
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On substituting into (12) and (60) we get 

j,, = - KeGg,i (65) 

(66) gyy + 49, j + K 2  eGg = 0. 

1 = IOa j,,dy = .IOa eGgdy 
From (64c) we have 

and again, as in (34), we write 

Gg = InG-X(v), v = y -e  (68) 

with x(0) = xo = o(ln G), ~ " ( 0 )  = 0, E = O( 1). 

x,,, + 8 jx, = . - X I (  / OD e-xdv)2. 
x obeys t-he equation 

- €  

Equation (69) differs from equation (37) only by the presence of j instead of 6 + 6. The 
boundary conditions are still 

(70) 

We surmise that the only contribution bo the right-hand side of (65) will be in a very 
thin region near v = 0. For large enough v, j + v - yo + E ,  

~ ( c o )  = x( - 6 )  = 111 G. 

where 

and so, by solving the homogeneous part of (69), 

x - In G erf {+(v + e - yo)>, 

x - n-4 In G(e-i(.-Q v + n4 erf {$(s - yo))). 

(71) 

a result analogous to (39). Moreover, for sufficiently small v, (71) leads to 

(72) 

X I "  0. (73) 

x - In@ [VI/E, (74) 

For sufficiently large negative v, j N 0 and so 

The relevant asymptotic solution, to order In G, becomes 

which takes the place of (42) above. As before, in the region [ v [  < O( l/ln G) we define L 
and (r [(43)-(45)] to give the solution (48). On matching (48) and (72), we find that xo 
is still given by (51) while 

(75) 
instead of (49). 

= (2n)-t e-&-yo)* In G 

Finally when we match (48) to (74), and use the definition of yo we find that 

yo = E + O( l/ln G ) ,  E N d. (76) 

The solution j - i K y 2  for large y is of order G-l and so does not appear in an expansion 
based on (In G)-I.  It is obvious that this places a restriction on the lower limit for p for which 
the similarity solution will be valid since y is actually bounded above by tp-'. 
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4 

FIGURE 3. Diagrammatic indication, using partly stretched co-ordinates (7, p), of double-layer 
structure of temperature and flow field. The broader parabolic layer (broken curve) has a 
thickness O(@) and is the region in which the temperature sensibly departs from its inlet value. 
The thin detached layer (solid curves) has a thickness O[@(ln and is the region in which the 
velocity changes from near zero by the wall to near its core value ; the temperature 0 is essentially 
In (G) /G  in this region. 

Thus we have obtained a similarity solution in which 0 has a maximum close to 

G-l(ln G - 3 In 2) for y = (7 + 4) Pet/@ close to nt, 

tends to G-l In G erfc ( i y  - +mi) for y > n4 

and to G-I In G y/n4 for y < n4. 
The range of /I = (/Pe for which the above solution is valid is similar to that for 7 

described in 4 3.2. Assuming that the maximum for 0 has to occur €or 7 + 4 < 1 ,  we have 
that the solution will be relevant for almost all of the channel length provided 

i.e. provided 

PeIG < l /h < Pe, 

G-l < Gz-l < 1.  

Figure 3 illustrates the nature of the layer structure. There is no difficulty in practice 
in ensuring that the upper and lower limits do indeed differ by orders of magnitude. 

4.2. Pressure drop and mean temperature 
The pressure drop corresponding to the solution given by (63) is 

This corresponds to a mean adiabatic temperature rise of 
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We note that the maximum temperature given by the similarity solution is 

T,,, = (lnG)/b. (81) 

This will be greater than ?ad provided Gz > 20,  which is consistent with most of the 
range (78). The actual mean temperature of the fluid leaving the end of the channel 
will be 

where the solutions g(y)  andj(y) from (63) have been used. We see that 

which confirms what is obvious from the structure of the dissipation layer. This gives 
a very simple way of assessing PSs in the form P / 2 p c  for practical cases in which P is 
easily measured but T is not. 

5. Extensions of the basic solution 
5.1. Shear-dependent viscosity 

We go back to the more general relation ( la)  for viscosity, which in terms of the 
velocity field ( 2 )  becomes, instead of (7), 

p = C, e-b18(au/ay)-2a. 

For the non-dimensionalizing procedure employed in Q 2.4, we put 

po = Co( V/h)P2*. 

For the unsteady uniform case treated in Q 3 we now recover the equations 

fnl(G, 7 )  = e-Gs(w,)l/m 

and 8, = 8,, + (f, ~ ) l + ~  emGo 

instead of (20) and (21), where 

If we use the similarity variable (23), then (87) and (86) become 

m = (1  - 2a)-1. 

7-1(gC6 + Qcgc) + 2-(l+m)em@ fif;'" = 0 

and 6 7-' = - ( 4 f m  1" emage 

It is at once clear that f, cannot be chosen so as to make (89) and (90) simultaneously 
independent of 7.  However, we note that the generation (viscous dissipation) term in 
(87) was significant only in a very thin layer whose length scale could be separately 
chosen, and we now suppose that in order to satisfy (89) and (90) we allow both the 
maximum temperature Gg and the length scale of v to depend slowly on 7.7 

Thus for c near to a,, we write 

Gw = C,(G, 7 )  - ~ ( b )  (91) 

t A two-time expansion should strictly be introduced at this stage, but the intention is only 
to outline the nature of the modification to earlier results and so a brief and simplified, if 
unrigorous, outline is given here. 
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with 

From (go), using 

5 = 8, + Bm(G, 7) g. 

e-1 = 2 4 2  
d8 

S_apJ = 1, s:, 
we get 

From (89)' and requiring that L obey (47), we get 

d B ,  f,?,?,'e* = 2,-8. 

rmG eCmf&+'"B& = 21+m, 

As in $ 3.2,  equations (39) and (41), we require that 

Amerf(45) for 5 > am, 
L N  { 

Dm - Emerf (45) for 5 < am, 
with A,, D,, Em slowly varying functions of 7.  On matching we have 

A m = D, = Em = C,, 8, = 0.955, 

B, = 42n exp ( - &JL)/Cm 

where C, - In (Gm~*(~-l)), 

f, - G-'T-*C, 

(93) 

(94) 

(95) 

(96) 

to a first approximation. We note that m > 1 with a typical value of 3 for rubbery 
thermoplastics. The Newtonian solution given in $ 3 involved relative errors of order 
(lnG)-l. Here we find on resubstitution that further errors of order (Ilnrl)-l are intro- 
duced. But we have already shown that 

G-1 < r < 1 

1 < llnr1 < 1nG so 

and no basic change in the asymptotic structure is involved. 

that the maximum temperature is given, from (91) and (95), by 
Very similar remarks apply to the steady-state entry flow problem, where we find 

GO = In (G@(m-l)/m) 

and the pressure drop by (79) with In G replaced by 

In {Gm Gz*('-")). 

5.2. PipeJlow 

The approximations given in $ 3  or $ 4  require that the velocity gradient only be 
significant in a thin layer at  a distance from the wall small compared with the channel 
depth. The argument can be extended trivially to the case of cylindrical pipes of general 
cross-section provided that the local radius of curvature of the pipes be large compared 
with the distance from the wall to the hot sheared layer. The 'equivalent ' channel will 
have a half-width equal to arealcircumference, i.e. the hydraulic mean radius. V 
remains the uniform core velocity. 
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5.3. Plow in a channel of slowly varying depth 

We suppose that h = h ( x )  such that Idhldxl < 1. Without going into thc details of the 
mixed expansions that should strictly be discussed, or equivalently of the order in 
which various limits are taken, we find that if we define a new variable x by 

hdz = h,dx, ~ ( 0 )  = 0 (97) 

then x can take the place of x in the similarity solutions obtained in 3 4. This gives the 
relevant pressure drops in terms of the modified channel length, provided the total 
relative changes in h are only of order 1, so that In G is unambiguously defined. It must 
be emphasized that the changes in h must be sufficiently slow. An analogous result 
applies to cone-like pipes of very small semi-angles. 

5.4 Radial flow in a disk-like channel 

Here we consider flow from an entry at  r = r, to an exit at  r = rl in a channel whose 
depth h = h(r)  is such that 

Locally the flow approximates the channel flow. If we define a new variable q by 

< 1'0, Idh/dr) < 1. 

h r,$ dq = h, 1'4 dr, q(r,) = 0 (98) 

then q takes the place of x in the similarity solution of 5 4. Pe is defined in terms of its 
value a t  r,. 

Appendix 
As we have seen from (23)-(26), the effect of conduction is limited to a distance of 

order r* from the wall and so, provided we never approach values of order unity, we can 
solve the purely adiabatic equation 

where f is a function of r given by the flux requirement 

0, = eG0 f 2v2, (A 1) 

Writing f 2dT = dT*, (A 3) 

e-G@ = 1 - yZGr*. (A 4) 

we get, on integrating (A 1)) using 8(r* = 0 )  = 0, 

Clearly T* can never exceed 4G-l, for at  rj = Q this gives 0 -+ co. From (A 2) we get 
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When Omax = G-l In G, by using (A 4) 

and the relevant value of 7, using (A 3), is given by 

and this can be shown to be of order I/G. At this stage we expect the similarity solution 
to take over, through the effect of conductivity. 
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